ARCC Tutoring Services | 763-433-1260 Rapids: Math Skills Center, Room L-127 Cambridge: ASC, Room D-208

Sequences & Series

Sequence: $a_1, a_2, a_3, ...$

Series: $a_1 + a_2 + a_3 + \cdots$

Arithmetic Sequences & Series

Common difference: d

nth term:

$$a_n = a_1 + (n-1)d$$

Example: Find the nth term of the sequence $10, 6, 2, -2, \dots$

$$a_1 = 10,$$
 $d = 6 - 10 = -4$

$$a_n = 10 - 4(n-1) = -4n + 14$$

Recursive formula:

$$a_1 = a_1 \& a_n = a_{n-1} + d$$

Example: List the first four terms of the sequence where $a_1 = 19 \& a_n = a_{n-1} - 5$.

$$a_1 = 19$$

$$a_3 = a_2 - 5 = 9$$

$$a_2 = a_1 - 5 = 14$$
 $a_4 = a_3 - 5 = 4$

$$a_4 = a_2 - 5 = 4$$

Sum of the first n terms:

$$S_n = \frac{n}{2}(a_1 + a_n)$$

Example:

7 + 13 + 19 + 25 + ... + 145 = ?

$$a_1 = 7$$
 $d = 13 - 7 = 6$
 $145 = 7 + 6(n - 1) \Rightarrow n = 24$
 $S_{24} = \frac{24}{3}(7 + 145) = 1824$

Geometric Sequences & Series

Common ratio: r

nth term:

$$a_n = a_1(r)^{n-1}$$

Example: Find the *n*th term of the sequence 12,4,

$$a_1 = 12$$
, $r = \frac{4}{12} = \frac{1}{3} \implies a_n = 12 \left(\frac{1}{3}\right)^{n-1}$

Recursive formula:

$$a_1 = a_1 \& a_n = a_{n-1} \cdot r$$

Example: List the first four terms of the sequence where $a_1 = 5$ and $a_n = -2a_{n-1}$.

$$a_1 = 5$$
 $a_3 = -2a_2 = 20$ $a_2 = -2a_1 = -10$ $a_4 = -2a_3 = -40$

Sum of the first n terms:

$$S_n = \frac{a_1(1-r^n)}{1-r}$$
 if $r \neq 1$

Example: Find the sum of the first ten terms of the series $6 - 12 + 24 - 48 + \cdots$

$$a_1 = 6$$
, $r = \frac{-12}{6} = -2$

$$S_{10} = \frac{6(1 - (-2)^{10})}{1 - (-2)} = -2046$$

Sum of infinitely many terms:

$$S_{\infty} = \frac{a_1}{1-r}$$
 if $|r| < 1$

(The series diverges if $|r| \ge 1$.)

Example:
$$8 + 2 + \frac{1}{2} + \frac{1}{8} + \dots = ?$$

$$a_1 = 8$$
, $r = \frac{2}{8} = \frac{1}{4}$

$$S_{\infty} = \frac{8}{1 - 1/4} = \frac{8}{3/4} = \frac{32}{3}$$