
- 1. Convert 1600 m to Mm. Give your answer in scientific notation.
- 2. Convert 26.80 kg to μ g. Give your answer in scientific notation.
- 3. Convert 65 miles per hour to meters per second.
- 4. Acetone has a density of 0.7857 g/mL.
 - a. What is the mass in grams of 28.56 mL of acetone?
 - b. What is the volume in milliliters of 6.54 g of acetone?
- 5. A book has the dimensions of 5.8 inches by 2.0 inches by 7.85 inches. What is its volume in cm³?

6. In lab, a graduated cylinder is filled with 100.0 mL of water. When a piece of metal weighing 37.02 g is added to the cylinder, it displaces water so the new volume is 112.6 mL. What's the density of the metal in g/mL?

7. Complete the table:

Symbol	Number of protons	Number of neutrons	Number of electrons
²⁷ ₁₃ Al ³⁺			
	20	21	20
⁸⁰ ₃₅ Br ⁻			

8. Balance the following equations:

$$C_2H_6 + O_2 \rightarrow CO_2 + H_2O$$

$$\underline{\hspace{1cm}}$$
 PCl₅ + $\underline{\hspace{1cm}}$ H₂O \rightarrow $\underline{\hspace{1cm}}$ H₃PO₄ + $\underline{\hspace{1cm}}$ HCl

9. Consider magnesium chloride for the following questions:

a. Is it an ionic or covalent compound?

b. What is the chemical formula for magnesium chloride?

c. What is its molar mass?

d. How many molecules of magnesium chloride are in a sample weighing 27.88 g?

e. How many atoms of chloride are in that sample?

10. Give the name or formula for the following compounds

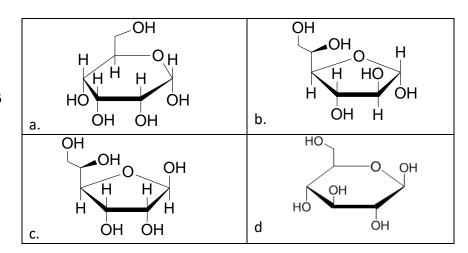
- a. $Ca(NO_3)_2$ e. K_2SO_4

- j. Silver phosphate n. Nickel(III) hydroxide

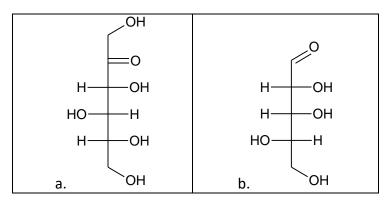
- b. PCl₅
- f. Fe₂(SO₄)₃
- k. Copper(II) bromide o. Zinc iodide

- c. Pb(CO₃)₂
- g. $Ba(C_2H_3O_2)_2$ I. Sodium sulfate
- p. Strontium phosphide

- d. S_2Br_2
- h. AlF₃
- m. Silicon dioxide


11. Write a balanced equation with phase labels for the reaction of barium nitrate with sodium sulfate. Use a solubility table from your notes or textbook to determine the phase labels.

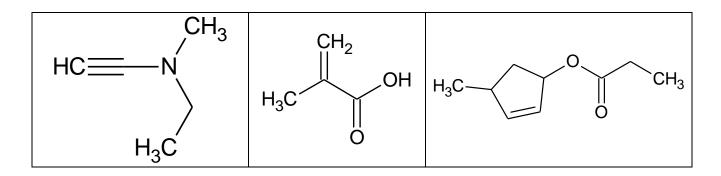
12. Fill in the table for the following reaction: $2As+3Cl_2\rightarrow2AsCl_3$


Substance Oxidized	
Substance Reduced	
Oxidizing Agent	
Reducing Agent	

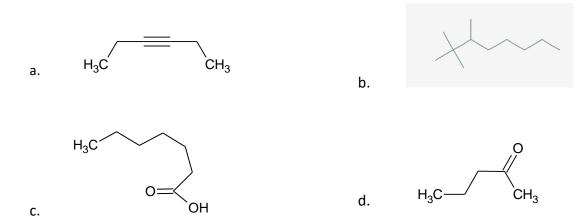
For questions 13-15, consider these four sugars:

- 13. Label each one as an α or β anomer.
- 14. Label each one as a furanose or pyranose.
- 15. Circle the anomeric carbon on each sugar.

For questions 16-19, consider these two sugars:


- 16. Label each one as an aldose or ketose.
- 17. Indicate which carbons in each structure are chiral.
- 18. Label each one as a D or L isomer.
- 19. Label each one as a tetrose, pentose or hexose.

20. Complete the following table:


Formula	Lewis structure	Electron** Geometry	Molecular Geometry	Polar or nonpolar?
CO ₂				
PCI ₃				
CINO				

- ** Not all courses cover electron geometry
- 21. True or false: A molecule that contains polar bonds must be polar. If false, explain why.
- 22. Rank the following molecules from lowest to highest boiling point: CHF₃, propane, ethanol, pentane.
- 23. Draw the molecule ethanol and show all possible hydrogen bonds it can form with water.

24. Circle and label all the functional groups in these molecules.

25. Name the following compounds:

- 26. Draw the structure for the following compounds:
 - a. 4-methyl-2-pentene

- b. 6,6-dimethylheptanal
- 27. For each of the following, determine whether the two structures are isomers or the same molecule drawn in two different ways.

- 28. How many grams of sodium chloride do you need to make 50.0 mL of 0.12 M sodium chloride solution?
- 29. What is the concentration of a solution if 0.8 moles of sucrose are dissolved in 0.75 L of water?
- 30. How many milliliters of 1.6 M copper(II) sulfate stock solution do you need to dilute if you want to create 25.0 mL of 0.255 M copper(II) sulfate?
- 31. How many grams of sucrose are in 0.685 mL of a solution that is 15.00% m/v?
- 32. Fill in the following table.

[H₃O ⁺]	[OH ⁻]	рН	рОН	Acidic, basic, or neutral
1.0×10^{-3}				
	1.0×10^{-7}			
		8.35		
			3.83	
1.0×10^{-5}				
	1.5×10^{-7}			

33. Write a reaction for the neutralization of NaOH with CH₃COOH. Label the acid, base, conjugate base, and conjugate acid.

- 34. The three dimensional structure of the whole protein is the_____.
 - a. hydrophobic side chain
 - b. primary structure
 - c. c-terminus
 - d. tertiary structure
- 35. What force helps keep alpha helixes from uncoiling and beta sheets together?
 - a. Hydrogen bonding
 - b. London forces
 - c. Ion-dipole attraction
 - d. Cell membranes
- 36. Classify the following amino acids as polar or nonpolar and as acidic, basic, or neutral based on their side chains.

Amino Acid	Polar or nonpolar?	Acidic, basic, or neutral?
H ₂ N OH		
H		
Amino Acid	Polar or nonpolar?	Acidic, basic, or neutral?
H H ₂ N—C—COOH CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ NH ₂		
O-H CH ₂ H ₂ N—C—COOH H		

Solutions

1.
$$1.6 \times 10^{-3} \text{ Mm}$$

2.
$$2.680 \times 10^{10} \, \mu g$$

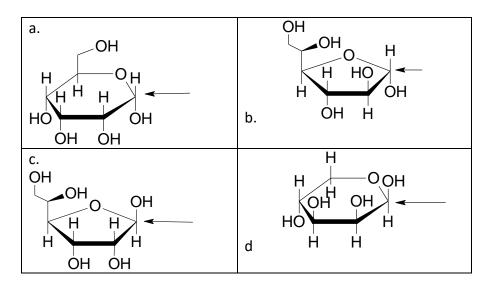
Symbol	Number of protons	Number of neutrons	Number of electrons
²⁷ ₁₃ Al ³⁺	13	14	10
⁴¹ ₂₀ Ca	20	21	20
⁸⁰ ₃₅ Br ⁻	35	45	36

8. **2**
$$C_2H_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$$

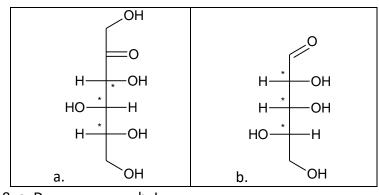
$$PCl_5 + 4 H_2O \rightarrow H_3PO_4 + 5 HCl$$

- 9. a. ionic b. MgCl₂ c. 98.21 g/mol (answers may vary slightly with periodic table) d. 1.763×10^{23} molecules of MgCl₂ e. 3.527×10^{23} atoms of Cl⁻
- 10.
 - (a) Calcium Nitrate
- (e) Potassium Sulfate
- (j) Ag_3PO_4
- (n) $Ni(OH)_3$

- (b) Phosphorous Pentachloride
- (f) Iron (III) Sulfate
- (k) CuBr₂
- (o) ZnI_2


- (c) Lead (IV) Carbonate
- (g) Barium Acetate
- (I) Na₂SO₄
- (p) Sr_3P_2

- (d) Disulfur dibromide
- (h) Aluminum Fluoride (m) SiO₂
- 11. $Ba(NO_3)_2(aq) + Na_2SO_4(aq) \rightarrow BaSO_4(s) + 2NaNO_3(aq)$ 12.


Substance Oxidized	As
Substance Reduced	Cl ₂
Oxidizing Agent	Cl ₂
Reducing Agent	As

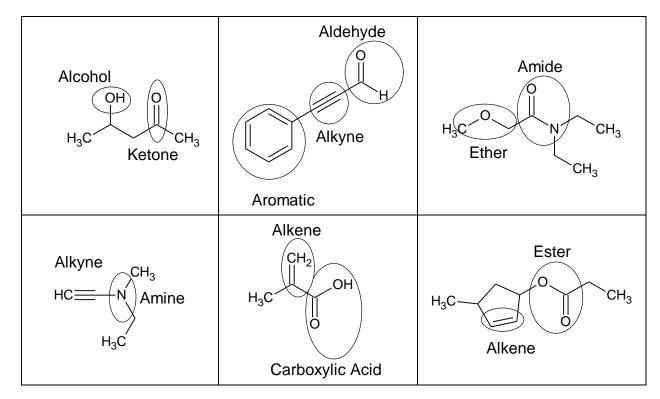
- 13. α : a and b; β : c and d
- 14. Pyranoses: a and d; furanoses: b and c

15.

- 16. a. Ketose b. Aldose
- 17. Chiral carbons indicated with an asterisk

18. a. D

b. L


19. a. hexose b. pentose

20.

Formula	Lewis structure	Electron Geometry	Molecular	Polar or
			Geometry	nonpolar?
CO ₂	o=c=o;	Linear	Linear	Nonpolar
PCl₃	:CI-P-CI: :CI:	Tetrahedral	Trigonal pyramidal	Polar
CINO	:Cl—N=O	Trigonal planar	Bent	Polar

- 21. False, a molecule can contain polar bonds and still be nonpolar due to symmetry. For example, in the tetrahedral molecule CCl₄, the carbon-chlorine bond is polar, but due to its tetrahedral shape, the 'pull' on each of the bonds cancels each other out.
- 22. propane (CH₃CH₂CH₃) < pentane (CH₃CH₂CH₂CH₂CH₃) < CHF₃ < ethanol (CH₃CH₂OH)
- 23. Left: structure of ethanol. Right: ethanol's three hydrogen bonds with water.

24.

25. a. 3-hexyne b. 2,2,3-trimethyloctane 26.

c. heptanoic acid d. 2-pentanone

$$CH_3$$
 H_3C
 CH_3

b.

27. a. same b. isomer c. same

28. 0.35g NaCl

29. 1M

30. 4.0mL

31. 0.103g sucrose

32.

[H ₃ O ⁺]	[OH ⁻]	рН	рОН	Acidic, basic or neutral
1.0×10^{-3}	1.0×10^{-11}	3.00	11.00	Acidic
1.0×10^{-7}	1.0×10^{-7}	7.00	7.00	Neutral
4.5×10^{-9}	2.2×10^{-6}	8.35	5.65	Basic
6.8×10^{-11}	1.5×10^{-4}	10.17	3.83	Basic
1.0×10^{-5}	1.0×10^{-9}	5.00	9.00	Acidic
7.0×10^{-6}	1.5×10^{-7}	5.15	8.85	Acidic

33. NaOH(aq) + CH₃COOH(aq) \rightarrow H₂O(I) + CH₃COO⁻(aq), **Acid**: CH₃COOH(aq), **Base**: NaOH(aq), **Conjugate Base**: CH₃COO⁻(aq), **Conjugate Acid**: H₂O(I)

34. d.

35. a.

36. (Amino acid name given instead of structure for the sake of space)

Amino Acid	Polar or nonpolar?	Acidic, basic, or neutral?
Glycine	Nonpolar	Neutral
Aspartic Acid	Polar	Acidic
Lysine	Polar	Basic
Serine	Polar	Neutral