Math 0240 Final Exam Review Questions

1. Simplify:
$$24 \div 8 \cdot 3 + 28 \div (-7)$$
PENDAS
$$3 \cdot 3 + 28 \div (-7)$$

$$9 + 28 \div (-7)$$

$$9 + -4$$

implify:
$$24 \div 8 \cdot 3 + 28 \div (-7)$$
 $3 \cdot 3 + 28 \div (-7)$
 $1 + 28 \div (-7)$
 $2 + 3 \cdot 4$
 $3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $2 \cdot 3 \cdot 3 + 28 \div (-7)$
 $3 \cdot 3 + 28 \div (-7)$
 $3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 \cdot 3 + 28 \div (-7)$
 $2 \cdot 3 \cdot 3 + 28 \div (-7)$
 $3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3 + 28 \div (-7)$
 $4 \cdot 3 \cdot 3$

3. Simplify:
$$-3(-5x+7) - 3(2-x) - 8x - 6$$

$$15x - 21 - 6 + 3x - 8x - 6$$

$$10x - 21 - 6 - 6$$

$$10x - 33$$

4. Simplify:
$$30\left(\frac{1}{5}x - \frac{4}{3}\right) + 30\left(\frac{3}{10}\right)$$

30. $\frac{1}{5}x - 30.4 + 30.3$

6. $\frac{1}{5}x - 10.4 + 3.3$

6. $\frac{1}{5}x - 40.49 \rightarrow 6x - 31$

In #5 – 11, Simplify the expressions. Each variable should only occur once, and exponents should be positive in your final answer. Evaluate exponents, if applicable.

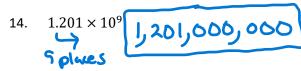
5.
$$3x^{-6}$$
 3 x^{-6} 3

6.
$$(3x^3)^{-2}$$

$$3^{-2} \cdot (x^3)^{-2}$$

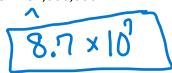
$$3^{-2} \cdot x^{-6} \rightarrow 3^{1}x^{6} \rightarrow 9x^{6}$$

7.
$$(3x^{-3})^2$$
 8. $3^2(x^3)^2$ $3^2x^6 \rightarrow \frac{3^2}{x^6}$


9.
$$\left(\frac{4}{7}\right)^{-2}$$
 $\frac{4^{-2}}{7^{-2}} \rightarrow \frac{7^{2}}{4^{2}} \rightarrow \frac{49}{16}$

11.
$$\left(\frac{b^{10}}{b^3}\right)^{-2} \rightarrow b^{-14} \rightarrow b^{-14}$$

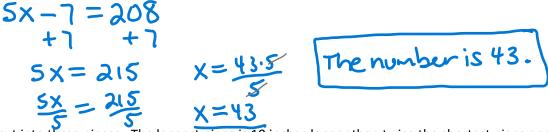
12. Evaluate $x^2 - 4xy - y^2$ when x = -2 and y = 3


$$(-2)^{2}-4(-2)(3)-(3)^{2}$$

 $4+24-9 \rightarrow 28-9$

In #13 and 14, write each of the numbers in decimal notation. Also called standard notation.

In #15 and 16, write each of the numbers in Scientific Notation.



In #17 – 19, Solve & check each equation.

17.
$$2(x-3) + 5x = 8(x-1)$$
 $2x - 6 + 5x = 8x - 8$
 $7x - 6 = 8x - 8$
 $-7x$
 $-7x$

For #20 – 25, define a variable in words, write an equation or inequality, solve algebraically, and write your answer in a complete sentence.

20. Seven subtracted from five times a number is 208. Find the number. Let x = the number

21. An 87-inch board is cut into three pieces. The longest piece is 10 inches longer than twice the shortest piece and the middle-sized piece is 17 inches longer than the shortest piece. How long are the pieces?

22. A landscape architect charged a customer \$971, listing \$350 for plants and the remainder for labor. If the architect charged \$23 per hour, how many hours did the architect work? Let X=# of hour5

Total cost = cost plants + cost labor $971 = 350 + 23 \cdot X$ -350 - 350 621 = 23X $350 + 23 \cdot X = 621$ $350 + 23 \cdot X = 23$ The architect worked for 27 hours.

23. A university with 176 people on the faculty wants to maintain a student-to-faculty ratio of 23:2. How many students should they enroll to maintain that ratio?

Proportion

23(176) = 2x

The university

could envolve a faculty =
$$\frac{23 \cdot 176}{2} = \frac{2}{4}$$
 $\frac{23 \cdot 176}{2} = \frac{2}{4}$
 $\frac{23 \cdot 176}{2} = \frac{2}{4}$

24. To earn a B in a course, a student must have a final average of at least 80%. On the first three examinations, a student has scores of 76%, 74%, and 78%. What must the student earn on the fourth examination to earn a B in the course?

Exam scores:
$$76,74,78,x$$
Average of: $\frac{76+74+78+x}{4}$
4. $\frac{(228+3)}{4}$
4. $\frac{228+x}{4}$
 $\frac{228+x}{4}$
 $\frac{228+x}{4}$

- They must sore 92% or better on Exant.
- 25. A motorcycle traveling at 50 mph overtakes a car traveling at 30 mph that had a three-hour head start. How far from the starting point are the two vehicles? (Distance = Rate*Time) (x = # 4 hours or watercycle

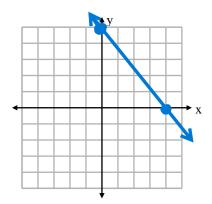
Motor:
$$50. X = 50X$$
 Those equal car $30. (x+3) = 30(x+3)$ Distance

$$50X = 30(x+3)$$
 Distant
 $50X = 30X + 90$
 $-30X - 30X$
 $20X = 90$
 $X = \frac{90}{20} = 4.5$

In #26 – 28, solve each inequality. Write the solution in interval notation and graph it on a number line.

$$-4$$
 -4 -4 $6 < -2x$ $\frac{6}{-2} > \frac{-2x}{-2}$ $\frac{-3}{-3} \times x < -3$

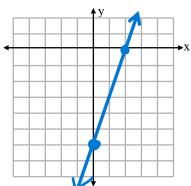
26. 10 < -2x + 4


27.
$$33x + 33 \ge 3(4x + 3)$$

 $33x + 33 \ge 12x + 9$
 $-12x - 12x$
 $21x + 33 \ge 9$
 $-33 - 33$
 $21x \ge -24$
 $21x \ge -24$
 $21x \ge -33$
 $21x \ge -24$
 $21x \ge -33$

Interval Notation:
$$\frac{L-8/7, \infty}{-8/7}$$

28.
$$-24 < 3x - 6 \le -15$$
+6 +6 +6 Isolak X
-18 < $3x \le -9$
-18 < $3x \le -9$
-18 < $3x \le -9$
-6 < $x \le -3$


29. Graph the line 5x + 4y = 20 by finding its x- and y- intercepts. Write your intercepts as ordered pairs.

$$\frac{x-int}{set}$$
 $\frac{y-int}{set}$ $\frac{y-int}{set$

30. Graph the line y = 3x - 6 by finding its x- and y- intercepts. Write your intercepts as ordered pairs.

0 = 3x - 6 5 = 3x - 6 5 = 3x - 6 5 = -6 6 = 3x 6 = -6 6 = -6 6 = -6 6 = -6 6 = -6 6 = -6 9

2=X (2)0)
In #31 – 33, solve each linear equation for y, then determine the slope and y-intercept of the line.

31. 4x + 3y = 6

3y=-4x+6

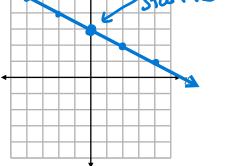
32. 3x - 2y = 5

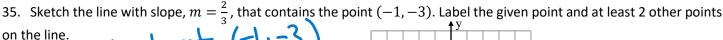
-2y = -3x + 5

7-int: (0)-5/2)

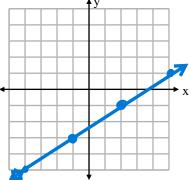
33. 5y - 8x = 30+8x +8X

= 8x+30


34. Use the slope and *y*-intercept to sketch $y = -\frac{1}{2}x + 3$.


Y-int (0,3)

M= -1 DOWN


Right

36. Write the equation for the line which passes through
$$(-2,5)$$
, and is parallel to the line $y=3x-2$.

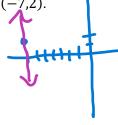
Has line has slope, 3.

Then so does our line, since parallel.

2 Find b.
$$y = 3x + b$$

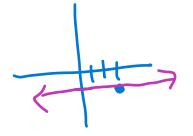
 $5 = 3(-2) + b$

37. Write the equation for the line which passes through the points
$$(3, -4)$$
 and $(5,0)$.


The equation for the line which passes through the points
$$(3, -4)$$
 and $(3,0)$.

Where $0 - (-4)$ is $0 + (-4)$ in $0 + (-4)$

$$0 = |0+b|$$


38. Write the equation for the line with undefined slope which passes through the point
$$(-7,2)$$
.

this line is Vertical

1 7=2x-10

39. Find an equation for the line which is parallel to the line
$$y = -2$$
, and passes through the point $(3, -1)$.

- 40. Sunny had \$10,400 in her bank account that she used just for her monthly rent. After five months, she had \$7150 in her account.
 - a. Give the slope of the given line, including units.

$$M = \frac{10400 - 7150 ($)}{0 - 5} = \frac{3250}{-5}$$
 munth

b. What does the slope mean as a rate of change for Sunny's account?

Amount in Account Decreases by \$650/mouth. (She pass \$650/mouth)

c. Write an equation for the line that models the amount in

Sunny's account.

$$\gamma = -650 \times + 10,400$$

d. Assuming she never adds any more money into the account, when will she run out of money?

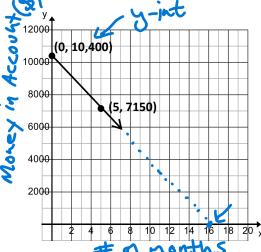
In #41 – 46, perform the indicated operation(s) and simplify the result.

41. $(-2x^2y + 9xy + xy^2 + 21) + (-4xy + 3xy^2 - 11)$

$$-2x^{2}y + 9xy + xy^{2} + 21$$

$$-4xy + 3xy^{2} - 11$$

$$-2x^{2}y + 5xy + 4xy^{2} + 10$$


43. (3a+7)(2a-5)

$$6a^{2}-15a+14a-35$$

$$6a^{2}-a-35$$

45. 3x(x+4)(x-4)

$$3x (x^2 - 4^2)$$

 $3x (x^2 - 16)$
 $3x^3 - 48x$

She will run out of money after 16 months,

42. $(9x^2 - 8x + 5) - (6x^2 - 7x - 1)$

$$9x^{2}-8x+5$$

 $-6x^{2}+7x+1$

44. $(2x + 7y)^2$

$$(2x + 7y)(2x + 7y)$$

 $4x^2 + 14xy + 14xy + 49x^2$
 $4x^2 + 28xy + 49y^2$

46. $(x + 3)^2 + (x + 3)(x - 3)$

$$(x+3)(x+3) + (x+3)(x-3)$$

 $x^2+3x+3x+9 + (x^2-3^2)$
 $x^2+6x+9 + (x^2-9)$
 $2x^2+6x$

tate that it is PRIME.

47.
$$t^2 + 2t - 15$$
 $(t + 5)(t - 3)$
 $t = 5$
 $t = 5$

$$(3p)^2 - 10^2$$
 2 Terms
 $(3p)^2 - 10^2$ subtracted
perfect squares -
 $(3p+10)(3p-10)$

$$r^2+r+2$$
 product $+2$
Sum $+1$
This is impossible

48.
$$m^2 - 12m + 36$$
 $(m-6)(m-6)$

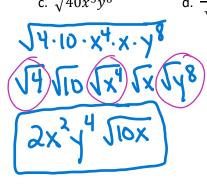
50. $4x^2 + 36$
 $G(F: 4: 4(x^2 + 9))$

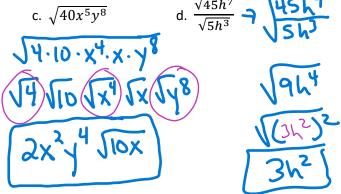
50. $4x^2 + 36$
 $Council be factored further

52. $2x^3 + 8x^2 + 6x$
 $2x(x^2 + 4x + 3)$
 $2x(x^2 + 4x + 3)$$

53. Simplify each expression. Leave your answer in the form of a simplified radical, if necessary.

d.
$$\sqrt{25} - \sqrt{16}$$


$$5 - 4$$


$$1$$

54. Use rules for square roots to simplify the expression. Do not use a calculator to approximate an answer.

b.
$$\sqrt{900a^{10}b^4}$$
 $\sqrt{30a^5b^2}$
 $\sqrt{30a^5b^2}$
 $\sqrt{30a^5b^2}$

a.
$$9x^2 - 25 = 0$$

 $(3x)^2 - 5^2$
 $(3x-5)(3x+5) = 0$
 $3x-5=0$ or $3x+5=0$
 $3x=5$
 $x=5/3$ or $x=-5/3$

b.
$$x(x-3) = 10$$
 c.
 $x^2-3x = 10$
 $x^2-3x-10=0$
 $(x-5)(x+2)=0$
 $x-5=0$ · $x+2=0$
 $x=5$ or $x=-2$

c.
$$2x^3 + 10x^2 + 12x = 0$$

 $2x(x^2 + 5x + 6) = 0$
 $2x(x + 2)(x + 3) = 0$
 $2x = 0 \text{ or } x + 2 = 0 \text{ or } x + 3 = 0$
 $x = 0 \text{ or } x + 2 = 0 \text{ or } x = -3$

56. Use the Square Root Property to solve each equation. Give exact, simplified solutions.

b. $(x-2)^2 = 16$

a.
$$9x^{2}-25=0$$
 $9x^{2}=25$
 $X^{2}=35$
 $X=35$
 $X=35$
 $X=35$
 $X=35$
 $X=35$

c.
$$\frac{2(x+5)^2 = 6}{2}$$

 $(x+5)^2 = 3$
 $x+5 = \sqrt{3}$ or $x+5 = -\sqrt{3}$
 $x=-5+\sqrt{3}$ or $x=-5-\sqrt{3}$

57. Use the Quadratic Formula to solve each equation. Give exact, simplified solutions.

a.
$$6x^2 - x - 1 = 0$$

Q=6 b=-1 C=-1

$$X = -(-1) \pm \sqrt{(-1)^2 - 4(6)(-1)}$$

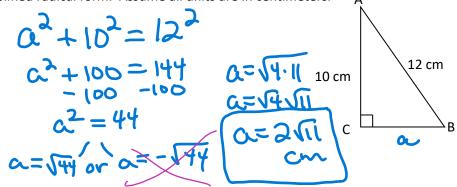
$$X = -(-1) \pm \sqrt{(-1)^2 - 4(1)(-1)}$$

$$X = -(-1) \pm \sqrt{(-1)^2 - 4(1)}$$

$$X = -(-1) \pm \sqrt{(-1)$$

b.
$$t^2 = t + 4$$

$$t^2 - t - 4 = 0$$

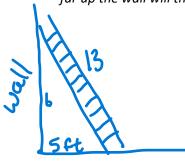

$$\alpha = 1 \quad b = -1 \quad c = -4$$

$$x = 1 - 5 \quad t = -(-1) \pm \sqrt{(-1)^2 - 4(1)(-4)}$$

58. The length of a rectangular garden is 4 feet longer than the width. If the area of the garden is 140 sq. feet, find the dimensions of the garden. 17 W+4

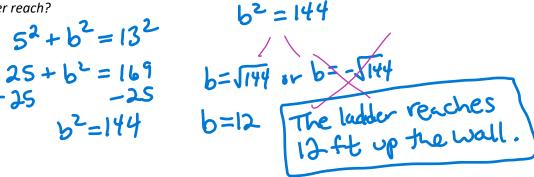
$$\begin{array}{c} 140 & \omega + 1460 \\ (\omega + 4) \omega = 140 & \omega = 44 \\ \omega^2 + 4\omega = 140 & \omega - 16=0 \\ \omega^2 + 4\omega - 140 = 0 & \omega = 10 \\ (\omega + 14)(\omega - 16)(\omega - 16) = 0 \\ (\omega + 14)(\omega - 16)(\omega - 16)(\omega$$

59. Use the Pythagorean Theorem to find the length of side BC on the right triangle below. Leave your answers in simplified radical form. Assume all units are in centimeters.



60. Solve the following problem by

A)defining a variable, B)writing an equation, C)solving the equation and D) answering the question in context.


A 13-foot ladder, leaning against a wall, is set with the bottom of the ladder 5 feet from the base of the wall. How

far up the wall will the ladder reach?

$$5^{2} + b^{2} = 13^{2}$$

 $25 + b^{2} = 169$
 -25
 -25

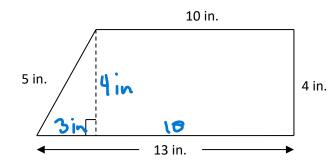
$$5^{2} + b^{2} = 13^{2}$$

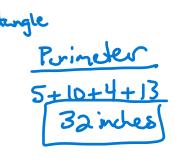
 $25 + b^{2} = 169$
 -25
 $b^{2} = 144$

61. Solve each formula for the given variable.

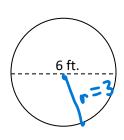
a. Solve for w:
$$P = 2l + 2w$$

$$P-2l = 2w$$

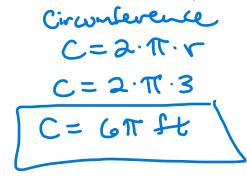

$$\frac{P-2l}{2} = \frac{2w}{2}$$


$$w = \frac{P-2l}{2}$$

b. Solve for
$$h$$
: $A = \frac{1}{2}bh$


$$\frac{2A}{b} = \frac{bh}{b} \quad \begin{cases} h = \frac{2A}{b} \end{cases}$$

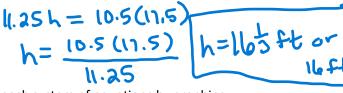
62. Find the area and perimeter of the figure.

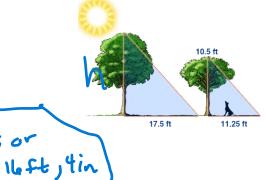


63. Find the circumference and area of the following circle. Leave your answer in terms of π . $A = \pi r^2$, $C = 2\pi r$

Area
$$A = \pi \cdot 3^2$$

$$A = 9\pi ft^2$$

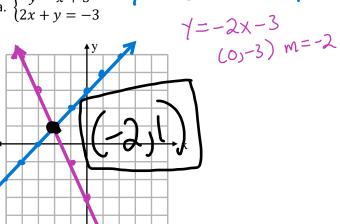


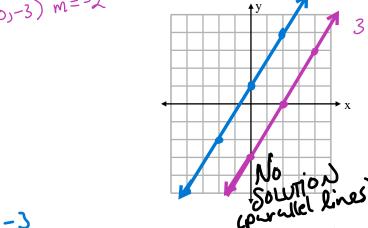

64. Solve the proportion:
$$\frac{a}{a+12} = \frac{4}{7}$$

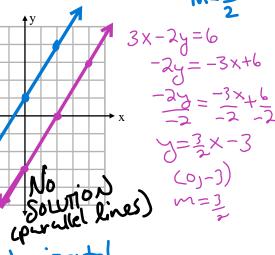
$$0.7 = 4(a+12)$$
 $7a = 4a + 48$
 $-4a - 4a$
 $3a = 48$
 $3a = 48$
 $3a = 48$

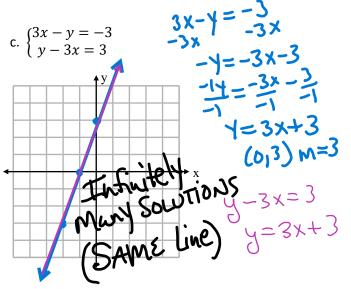
65. Given the lengths of the shadows of each tree as well as the height of the smaller tree, find the height of the taller Similar Triangles

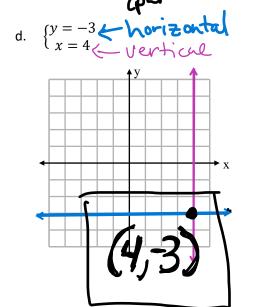
height $\frac{h}{17.5}$ = $\frac{10.5}{11.25}$ ft



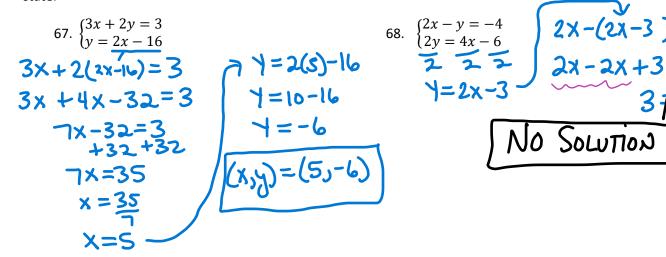

66. Solve each system of equations by graphing.

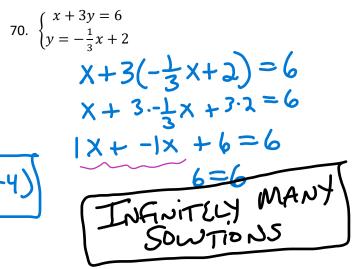

a.
$$\begin{cases} y = x + 3 \\ 2x + y = -3 \end{cases}$$


Solve each system of equations by graphing.
a.
$$\begin{cases} y = x + 3 \\ 2x + y = -3 \end{cases}$$



b.
$$\begin{cases} 2y = 3x + 2 \\ 3x - 2y = 6 \end{cases}$$
 $\begin{cases} 2\frac{y}{2} = \frac{3x}{2} + \frac{2}{2} \\ (0,1) \\ m = \frac{3}{2} \end{cases}$





In #67 – 70, Solve each system using the substitution method. If there is *No Solution,* or *Infinitely Many Solutions*, so state.

71. Given the sets $A = \{m, a, t, h\}$, $B = \{m, y, t, h\}$, $C = \{f, u, n\}$, find the following:

a.
$$A \cup B = \{ M, a, t, h, y \}$$
b. $A \cap B = \{ M, t, h \}$
interest

c.
$$A \cap C = \emptyset$$
 Empty Set

th

d. Fill in the Venn Diagram using A and B

- a. The number of people taking a college level math class, but not a science course is

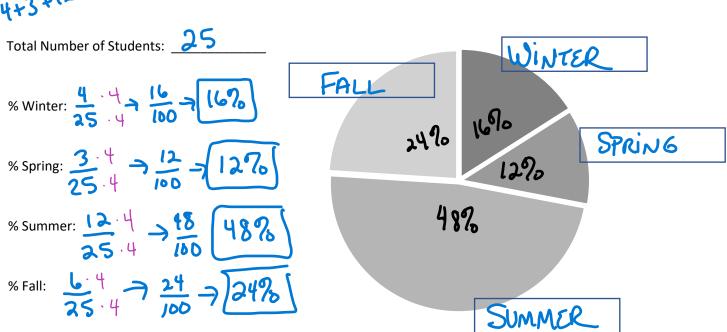
Tuter section

b. Suppose we want to mail scholarship information to all of the individuals who are taking a college level math course or taking a science course or both but we don't want anyone to receive two mailings. How many mailings do we need to send so that each person receives only one mailing?

225 + 625 + 475 -> \ 1325 mailings

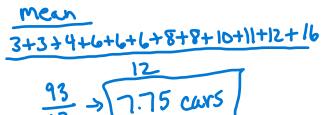
72. We have information for the number of students at ARCC taking a college level math class, and the number of

know 850 students are taking a college level math class, 1100 students are taking a science course, and 625


students at ARCC taking a science course. Use a Venn diagram to illustrate the number that are in each region. We

73. A class was polled on their favorite season of the year. Use the following table to finish the pie chart (title, percentages, label each portion)

Winter	Spring	Summer	Fall
4	3	12	6


Title: FAVORITE SEASON

74. Twelve car salespersons were asked how many cars they sold in the last month. Here were their answers:

a. Find the range, mean, median of the number of cars sold

Median

b. Give the 5-number summary:

Min. value: 3

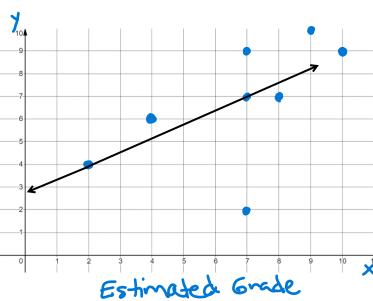
 Q_1 : 5

Median, Q_2 :

 Q_3 : 0.5 Max. value: 16

8 8 16 11, 12 16 10+11 > 10.5

Draw the box plot



75. Eight students were asked to estimate their score on a 10-point quiz. Their estimated and actual scores are given in the table. Draw a scatter plot of the data, then use two convenient points to draw a line of best fit. Give the equation for

your line. Y=mx+b

Estimated X	Actual 🗡	
4	6	
7	7	
7	2	
8	7	
7	9	
9	10	
10	9	
2	4	

I will use (2,4) and (7,7). ① Find $m = \frac{7-4}{7-2} = \frac{3}{5}$