1. Simplify: $24 \div 8 \cdot 3+28 \div(-7)$

Pandas

$$
\begin{gathered}
3 \cdot 3+28 \div(-7) \\
9+28 \div(-7) \\
9+-4 \\
5
\end{gathered}
$$

3. Simplify: $-3(-5 x+7)-3(2-x)-8 x-6$

$$
\begin{aligned}
& 15 x-21-6+3 x-8 x-6 \\
& 10 x-21-6-6 \\
& 10 x-33
\end{aligned}
$$

2. Simplify: $\frac{11-(-9)+6(10-4)}{2+3 \cdot 4} \rightarrow \frac{11+9+6(6)}{2+3 \cdot 4}$

$$
\frac{11+9+36}{2+12} \rightarrow \frac{20+36}{14} \rightarrow \frac{56}{14} \rightarrow \frac{14 \cdot 4}{14}
$$

4. Simplify: $30\left(\frac{1}{5} x-\frac{4}{3}\right)+30\left(\frac{3}{10}\right)$

In \#5-11, Simplify the expressions. Each variable should only occur once, and exponents should be positive in your final answer. Evaluate exponents, if applicable.
5. $3 x^{-6}$
6. $\left(3 x^{3}\right)^{-2}$
7. $\left(3 x^{-3}\right)^{2}$
8. $5^{-3} \rightarrow \frac{1}{5^{3}} \quad 5.5 \cdot 5$

$3^{3^{-2} \cdot\left(x^{3}\right)^{2}} x^{-2}-\frac{1}{3^{3} x^{6}}=\sqrt{\frac{1}{x^{0}}}$
$3^{2} \cdot\left(x^{-3}\right)^{2}$

$$
3^{2} x^{-6} \rightarrow \frac{3^{2}}{x^{6}} \frac{9}{x^{6}}
$$

$$
\frac{5}{125}
$$

9. $\left(\frac{4}{7}\right)^{-2}$
10. $\left(\frac{x^{7}}{x^{2}}\right)^{3}$

$$
\left(x^{(x)}\right)^{(\bar{x})}-x^{15}
$$

11. $\left(\frac{b^{10}}{b^{3}}\right)^{-2}$

$$
\frac{4^{-2}}{7^{-2}} \rightarrow \frac{7^{2}}{4^{2}}=\frac{49}{16}
$$

$$
\begin{aligned}
& \left(b^{\left.\frac{(0}{b^{2}}\right)}\right)^{-2} \rightarrow b^{-14} \rightarrow \frac{1}{b^{14}} \\
& \hline
\end{aligned}
$$

12. Evaluate $x^{2}-4 x y-y^{2}$ when $x=-2$ and $y=3$

$$
\begin{aligned}
& (-2)^{2}-4(-2)(3)-(3)^{2} \\
& 4+24-9 \rightarrow 28-9 \\
& 19]
\end{aligned}
$$

In \#13 and 14, write each of the numbers in decimal notation. Also called standard notation.

13. 3.113×10^{-5}
14. $\underset{\substack{1.201} 10^{9} \xrightarrow{1,201,000,000} 000}{ }$
splices 0.00003113
9 places
In \#15 and 16, write each of the numbers in Scientific Notation.
15. $87,000,000$

16. 0.000017
1.7×10^{-5}

In \#17-19, Solve \& check each equation.
17. $2(x-3)+5 x=8(x-1)$
$2 x-6+5 x=8 x-8$

$$
7 x-6=8 x-8
$$

$$
-7 x \quad-7 x
$$

$$
-6=x-8
$$

$$
+8+8
$$

$$
2=x \quad x=2
$$

$$
\begin{array}{ll}
15\left(\frac{2 x}{3}+\frac{1}{5}\right)=\left(1+\frac{3 x}{5}-\frac{1}{3}\right)^{15} & \text { 19. } \\
\begin{array}{ll}
\frac{x+2}{3} & =\frac{x}{6} \\
15 \cdot \frac{2 x}{3}+15 \cdot \frac{1}{5}=15 \cdot 1+\frac{15 \cdot 3}{5} x-15 \cdot \frac{1}{3} & \frac{6 \cdot(x+2)}{3}=6 \cdot \frac{x}{6} \\
10 x+3=15+9 x-5 & 2(x+2)=x \\
10 x+3=9 x+10 & 2 x+4=1 x \\
-9 x & -9 x \\
1 x+3=10 & 4=-1 x \\
-3-3 & 4
\end{array} &
\end{array}
$$

$$
\begin{array}{rl}
2(2-3)+5 \cdot 2 & =8(2-1) \\
2(-1)+10 & 8(1) \\
-2+10 & =8
\end{array}
$$

For \#20-25, define a variable in words, write an equation or inequality, solve algebraically, and write your answer in a complete sentence.
20. Seven subtracted from five times a number is 208. Find the number. Let $x=$ the number

$$
\begin{array}{rl}
5 x-7 & =208 \\
+7 & \\
5 x & =215 \\
5 & x=\frac{43.5}{5} \\
\frac{5 x}{5} & =\frac{215}{5}
\end{array} \quad x=43 . \quad \text { The number is } 43 .
$$

21. An 87 -inch board is cut into three pieces. The longest piece is 10 inches longer than twice the shortest piece and the middle-sized piece is 17 inches longer than the shortest piece. How long are the pieces?

Let $x=$ length of short piece (inches)

Shortest pice 7 (Sin middle piece $\rightarrow 32 \mathrm{in}$ Longest piece 740 in .
22. A landscape architect charged a customer $\$ 971$, listing $\$ 350$ for plants and the remainder for labor. If the architect charged \$23 per hour, how many hours did the architect work? Let $x=\#$ of hours

Total cost $=$ Cost plants + Cost Labor
$971=350+23 \cdot x$ $-350-350$
$621=23 x \longrightarrow \frac{23 x}{23}=\frac{621}{23} \quad x=27$

The architect worked for 27 hours.
23. A university with 176 people on the faculty wants to maintain a student-to-faculty ratio of $23: 2$. How many students should they enroll to maintain that ratio?

$$
\begin{aligned}
& \text { Proportion } \\
& \frac{23 \text { students }}{2 \text { fact } 1 \text { ty }}=\frac{x \text { students }}{176 \text { faculty }}
\end{aligned}
$$

$$
23(176)=2 x
$$

$$
\frac{23 \cdot 176}{2}=\frac{8 x}{2}
$$

$$
x=2024
$$

24. To earn a B in a course, a student must have a final average of at least 80%. On the first three examinations, a student has scores of $76 \%, 74 \%$, and 78%. What must the student earn on the fourth examination to earn a B in the course? Let $x=$ score needed on Exam y
Exam scores: $76,74,78, x$

$$
\begin{aligned}
& 4 \text { stoves } \begin{array}{l}
\text { Average of: } \frac{76+74+78+x}{4}
\end{array} 4_{0} \frac{(228+x)}{4} \geq 80.4 \\
& 228+x \geq 320 \\
& -228-228 \\
& x \geq 92
\end{aligned}
$$

25. A motorcycle traveling at 50 mph overtakes a car traveling at 30 mph that had a three-hour head start. How far from the starting point are the two vehicles? (Distance $=$ Rate*Time) Let $x=\# \mathrm{~g}$ hours on motorople

$$
\begin{aligned}
& 50 x=30(x+3) \\
& 50 x=30 x+90 \\
& -30 x-30 x \\
& 20 x=90 \\
& x=\frac{90}{20}=4.5
\end{aligned}
$$

They must sore 927% or better on Exam 4.

Let $x=\# g$ hours on motorize
Distance traced:

In \#26-28, solve each inequality. Write the solution in interval notation and graph it on a number line.
26. $10<-2 x+4$

$6<-2 x$

$$
\begin{aligned}
\text { fill } \frac{6}{-2} & >\frac{-2 x}{-2} \\
& -3>x \quad x<-3
\end{aligned}
$$

$$
\begin{aligned}
& \text { 27. } 33 x+33 \geq 3(4 x+3) \\
& 33 x+33 \geq 12 x+9 \\
& -12 x \quad-12 x \\
& \begin{array}{c}
21 x+33 \geq 9 \\
-33 \\
-33
\end{array} \\
& 21 x \geqslant-24 \quad x \geq \frac{-8.9}{7.8}
\end{aligned}
$$

28. $-24<3 x-6 \leq-15$ $+6+6+6$ Isolate x in the middle

$$
\begin{aligned}
& -18<3 x \leq-9 \\
& -\frac{18}{3}<\frac{3 x}{3} \leq \frac{-9}{3} \quad-6<x \leq-3
\end{aligned}
$$

Interval Notation: \qquad $(-6,-3]$

29. Graph the line $5 x+4 y=20$ by finding its x - and y-intercepts. Write your intercepts as ordered pairs.

$$
\begin{aligned}
& \frac{x-\operatorname{int}}{\operatorname{set} y=0} \\
& 5 x+4(0)=20 \\
& 5 x=20 \\
& \frac{5 x}{5}=\frac{20}{5} \\
& x=4 \\
& (4,0)
\end{aligned}
$$

$\frac{y \text {-int }}{\operatorname{set} x=0}$

$$
5(0)+4 y=20^{x}
$$

$$
\begin{aligned}
& \frac{4 y}{4}=\frac{20}{4} \\
& y=5 \\
& (0,5)
\end{aligned}
$$

$(4,0)$
$(0,5)$

30. Graph the line $y=3 x-6$ by finding its x - and y-intercepts. Write your intercepts as ordered pairs.

$$
\begin{aligned}
& \frac{x-i n}{\operatorname{set} y}=0 \\
& \frac{y \text {-int }}{\operatorname{set} x=0} \\
& 0=3 x-6 \\
& y=3 \cdot 0-6 \\
& +6+6 \\
& y=-6 \\
& (0,-6) \\
& \text { xintereept }(2,0) \\
& \begin{array}{l}
6=3 x \\
\frac{6}{3}=\frac{3 x}{3}
\end{array} \\
& 2=x(2,0)
\end{aligned}
$$

In \#31-33, solve each linear equation for y, then determine the slope and y-intercept of the line.
31. $4 x+3 y=6$
$-4 x$
32. $3 x-2 y=5$

$$
3 y=-4 x+6
$$

$\frac{3 y}{3}=-\frac{4 x}{3}+\frac{6}{3}$
$-3 x \quad-3 x$
$-2 y=-3 x+5$
$\frac{-2 y}{-2}=\frac{-3 x}{-2}+\frac{5}{-2}$
$\quad 4=\frac{3}{2} x-\frac{5}{2}$
Slope: 3/2 y-int: $(0,-5 / 2)$

$$
\begin{array}{r}
33 . \begin{array}{c}
5 y-8 x=30 \\
\\
+8 x+8 x \\
5 y=8 x+30 \\
\frac{5 y}{5}=\frac{8 x}{5}+\frac{30}{5} \\
y=8 / 5 x+6 \\
\text { Slope: } 8 / 5 \\
y \text {-int: }(0,6)
\end{array}
\end{array}
$$

34. Use the slope and y-intercept to sketch $y=-\frac{1}{2} x+3$.

$$
\begin{aligned}
& Y \text {-int }(0,3) \\
& m=\frac{-1}{2} \text { Down } \\
& \text { or } \\
& m=\frac{1}{-2} \text { up }
\end{aligned}
$$

35. Sketch the line with slope, $m=\frac{2}{3}$, that contains the point $(-1,-3)$. Label the given point and at least 2 other points on the line.

$$
\begin{gathered}
\text { start at }(-1,-3) \\
m=\frac{2}{3} \text { up }
\end{gathered}
$$

36. Write the equation for the line which passes through $(-2,5)$, and is parallel to the line $y=3 x-2$.
$y=m x+b$
(1) find $m \quad m=3$ this line has slope, 3.
(2) Find $b, y=3 x+b$

$$
\begin{aligned}
& y=3 x+b \\
& 5=3(-2)+b \\
& 5=-6+b \text { E } b=11 \\
& \text { tiv er the line which passes throw } \\
& m=\frac{0-(-4)}{5-3}=\frac{4}{2}
\end{aligned}
$$

(2) find b

$$
m=2
$$

37. Write the equation for the line which passes through the points $(3,-4)$ and $(5,0)$.

38. Write the equation for the line with undefined slope which passes through the point $(-7,2)$.
this line is
vertical

39. Find an equation for the line which is parallel to the line $y=-2$, and passes through the point $(3,-1)$.

this is a horizontal line.
Our line is also horizontal since parallel.

$$
y=-1
$$

40. Sunny had $\$ 10,400$ in her bank account that she used just for her monthly rent After five months, she had $\$ 7150$ in her account.
a. Give the slope of the given line, including units.

$$
m=\frac{10400-7150(\$)}{0-5 \text { maths }}=\frac{3250}{-5} \text { month } \quad-650 \$ \text { moth } \quad \text { math }
$$

b. What does the slope mean as a rate of change for Sunny's account? Amount in Account Decreases by $\$ 650 /$ mouth. (She pas /s $\$ 650 /$ mont)
c. Write an equation for the line that models the amount in

$$
y=-650 x+10,400
$$

She will run out of money after 16 months.

$$
\begin{aligned}
& \text { nev? Let } y=0 \\
& 0=-650 x+10400 \\
& 650 x=10400 \\
& x=10400 \\
& \text { ionerationss and simplify the res }
\end{aligned}
$$

d. Assuming she never adds any more money into the account, when will she run out of money? Let $y=0$

In \#41-46, perform the indicated operations) and simplify the result.

$$
\text { 41. } \begin{aligned}
&\left(-2 x^{2} y+9 x y+x y^{2}+21\right)+\left(-4 x y+3 x y^{2}-11\right) \\
&-2 x^{2} y+9 x y+x y^{2}+21 \\
&-4 x y+3 x y^{2}-11 \\
&-2 x^{2} y+5 x y+4 x y^{2}+10
\end{aligned}
$$

43. $(3 a+7)(2 a-5)$ fol レ

$$
\begin{aligned}
& 6 a^{2}-15 a+14 a-35 \\
& 6 a^{2}-a-35
\end{aligned}
$$

45. $3 x(x+4)(x-4)$
$3 x\left(x^{2}-4^{2}\right)$
$3 x\left(x^{2}-16\right)$

$$
3 x^{3}-48 x
$$

42. $\left(9 x^{2}-8 x+5\right)-\left(6 x^{2}-7 x-1\right)$

$$
9 x^{2}-8 x+5
$$

$$
-6 x^{2}+7 x+1
$$

$$
3 x^{2}-x+6
$$

44. $(2 x+7 y)^{2}$

$$
\begin{aligned}
& \left.44 .(2 x+7 y)^{2}\right)(2 x+7 y) \\
& 4 x^{2}+14 x y+14 x y+49 y^{2} \\
& 4 x^{2}+28 x y+49 y^{2}
\end{aligned}
$$

46. $(x+3)^{2}+(x+3)(x-3)$

$$
\begin{gathered}
\text { (x. }(x+3)(x+3)+(x+3)+(x+3)(x-3) \\
x^{2}+3 x+3 x+9+\left(x^{2}-3^{2}\right) \\
x^{2}+6 x+9+\left(x^{2}-9\right) \\
2 x^{2}+6 x
\end{gathered}
$$

In \#47-52, completely factor each polynomial, including factoring out the Greatest Common Factor. If not factorable, state that it is PRIME.

53. Simplify each expression. Leave your answer in the form of a simplified radical, if necessary.

54. Use rules for square roots to simplify the expression. Do not use a calculator to approximate an answer.

55. Use factoring to solve each equation.

a. $9 x^{2}-25=0$

$$
\begin{gathered}
(3 x)^{2}-5^{2} \\
(3 x-5)(3 x+5)=0 \\
3 x-5=0 \text { or } 3 x+5=0 \\
3 x=5 \quad 3 x=-5 \\
x=5 / 3 \text { or } x=-5 / 3
\end{gathered}
$$

b. $x(x-3)=10$

$$
\begin{aligned}
& x^{2}-3 x=10 \\
& x^{2}-3 x-10=0 \\
& (x-5)(x+2)=0 \\
& x-5=0 \text { or } x+2=0 \\
& x=5 \text { or } x=-2
\end{aligned}
$$

c. $2 x^{3}+10 x^{2}+12 x=0$

$$
\begin{aligned}
& x^{3}+10 x^{2}+12 x=0 \\
& 2 x\left(x^{2}+5 x+6\right)=0 \\
& 2 x(x+2)(x+3)=0 \\
& 2 x=0 \text { or } x+2=0 \text { or } x+3=0 \\
& x=0, x=-2 \text { or } x=-3
\end{aligned}
$$

56. Use the Square Root Property to solve each equation. Give exact, simplified solutions.
a. $9 x^{2}-25=0$
b. $(x-2)^{2}=16$
c. $\frac{2(x+5)^{2}}{2}=\frac{6}{2}$

$$
\begin{array}{ll}
1 & 2 \\
\begin{array}{c}
1 \\
x-2=\sqrt{16} \\
\text { or } x-2=-\sqrt{16} \\
x-2=4
\end{array} & (x+5)^{2}=3 \\
+2+2 & x-2=-4 \\
+2+2 & x+5=\sqrt{3} \text { or } x . \\
x=6 \text { or } x=-2 & \begin{array}{l}
-5 \\
\hline
\end{array} \\
x=-5+\sqrt{3} \text { or } x
\end{array}
$$

57. Use the Quadratic Formula to solve each equation. Give exact, simplified solutions.
a. $6 x^{2}-x-1=0$
b. $t^{2}=t+4$

$$
\begin{aligned}
& a=6 \quad b=-1 \quad c=-1 \\
& t^{2}-t-4=0 \quad \frac{1}{2 a} \\
& a=1 \quad b=-1 \quad c=-4 \\
& x=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(6)(-1)}}{2(6)} \\
& x=\frac{1 \pm \sqrt{1+24}}{12} \quad x=\frac{1 \pm \sqrt{25}}{12} \\
& \begin{array}{c}
x=\frac{1+5}{12} \text { or } x=\frac{1-5}{12} \\
x=6 / 12 \text { or } x=-\frac{4}{12} \\
x=1 / 2 \text { or } x=-1 / 3
\end{array} \\
& \begin{array}{l}
t=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-4)}}{2(1)} \\
t=\frac{1 \pm \sqrt{1+16}}{2} t=\frac{1 \pm \sqrt{17}}{2}
\end{array} \\
& \begin{array}{c}
x=\frac{1+5}{12} \text { or } x=\frac{1-5}{12} \\
x=6 / 12 \text { or } x=\frac{-4}{12} \\
x=1 / 2 \text { or } x=-1 / 3
\end{array} \\
& \begin{array}{c}
x=\frac{1+5}{12} \text { or } x=\frac{1-5}{12} \\
x=6 / 12 \text { or } x=\frac{-4}{12} \\
x=1 / 2 \text { or } x=-1 / 3
\end{array} \\
& \text { (} x=1+5, x=1-5 \text {. } \\
& \text { 58. The length of a rectangular garden is } 4 \text { feet longer than the width. If the area of the garden is } 140 \text { sq. feet, find the } \\
& \text { dimensions of the garden. } \& T \mathrm{~L}+4 \\
& \text { yea of the garden is } 140 \text { sq. feet, find the }
\end{aligned}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

59. Use the Pythagorean Theorem to find the length of side BC on the right triangle below. Leave your answers in simplified radical form. Assume all units are in centimeters.

$$
\begin{aligned}
& a^{2}+10^{2}=12^{2} \\
& a^{2}+100=144 \quad a=\sqrt{4 \cdot 11} 10 \mathrm{~cm} \\
& -100-100 \quad a=\sqrt{4} \sqrt{11} \\
& a^{2}=44 \\
& a=\sqrt{44} \text { or } a=-\sqrt{44} \quad \begin{array}{r}
a=2 \sqrt{11} \\
\mathrm{~cm}
\end{array}
\end{aligned}
$$

60. Solve the following problem by
A)defining a variable, B) writing an equation, C) solving the equation and D) answering the question in context.

A 13-foot ladder, leaning against a wall, is set with the bottom of the ladder 5 feet from the base of the wall. How far up the wall will the ladder reach?

$$
\begin{array}{rlrl}
5^{2}+b^{2} & =13^{2} & \\
25+b^{2} & =169 & b & =\sqrt{144} \\
-25 & -25 & & b=12
\end{array}
$$ $b^{2}=144$

61. Solve each formula for the given variable.
a. Solve for $w: ~ P=2 l+2 w$
b. Solve for h : $\quad A=\frac{1}{2} b h^{\swarrow}$
$-2 l-2 \lambda$

$$
\begin{aligned}
& P-2 l=2 \omega \\
& \frac{P-2 l}{2}=\frac{2 \omega}{2} \quad \frac{P}{2}-\frac{2 l}{2}=\frac{2 \omega}{2} \\
& \omega=\frac{P-2 l}{2} \text { or } \omega=\frac{P}{2}-l
\end{aligned}
$$

62. Find the area and perimeter of the figure.

Amen of Triangle + Are Rectangle

$$
\frac{1}{2} \cdot 3 \cdot 4+
$$

$$
\frac{6+40}{46 \mathrm{in}^{2}}
$$

Perimeter | $5+10+4+13$ |
| :--- |
| 32 inches |

63. Find the circumference and area of the following circle. Leave your answer in terms of π. $A=\pi r^{2}, C=2 \pi r$
 Area Circumference

$$
\begin{aligned}
& A=\pi \cdot 3^{2} \\
& A=9 \pi \mathrm{ft}^{2}
\end{aligned}
$$

$$
c=2 \cdot \pi \cdot r
$$

$$
c=2 \cdot \pi \cdot 3
$$

$$
C=6 \pi f t
$$

64. Solve the proportion: $\frac{a}{a+12}=\frac{4}{7}$

$$
\begin{aligned}
& a \cdot 7=4(a+12) \\
& 7 a=4 a+48 \\
& -4 a \quad-4 a \quad 3 a=48 \quad a=16
\end{aligned}
$$

65. Given the lengths of the shadows of each tree as well as the height of the smaller tree, find the height of the taller tree. Similar Triangles
$\begin{aligned} & \text { height } \\ & \text { shula }\end{aligned} \frac{h \mathrm{ft}}{17.5 \mathrm{ft}}=\frac{10.5 \mathrm{ft}}{11.25 \mathrm{ft}}$

$$
\begin{aligned}
& 11.25 h=10.5(17.5) \\
& h=\frac{10.5(17.5)}{11.25} \quad h=16 \frac{1}{3} \mathrm{ft} \text { or } \\
& 16 \mathrm{ft}, 4 \mathrm{in}
\end{aligned}
$$

66. Solve each system of equations by graphing.
a. $\left\{\begin{array}{c}y=x+3 \\ 2 x+y=-3\end{array} \quad \mathrm{Y}=\mathrm{X}+3\right.$
$(0,3) m=\frac{1}{1}$
b. $\left\{\begin{array}{l}2 y=3 x+2 \\ 3 x-2 y=6\end{array}\right.$

$$
y=\frac{3}{2} x+1
$$

$\frac{2 y}{2}=\frac{3 x}{2}+\frac{2}{2}$

$$
(0,1)
$$

$$
y=-2 x-3
$$ $(0,-3) m=-2$

c. $\left\{\begin{array}{c}3 x-y=-3 \\ y-3 x=3\end{array}\right.$

$$
\begin{aligned}
& 3 x-y=-3 \\
& -3 x
\end{aligned}
$$

Sounion

$$
m=\frac{3}{2}
$$

$$
-y=-3 x-3
$$

Infurteytions
many solutions (Same line) $\begin{aligned} & -3 x=3 \\ & y=3 x+3\end{aligned}$
d. $\left\{\begin{array}{l}y=-3 \longleftarrow \text { horizontal } \\ x=4 \longleftarrow \text { vertical }\end{array}\right.$

$$
\begin{aligned}
& x-2 y=6 \\
& -2 y=-3 x+6 \\
& \frac{-2 y}{}=\frac{-3 x}{-2}+\frac{6}{-2} \\
& y=\frac{3}{2} x-3 \\
& (0,-3) \\
& m=\frac{3}{2}
\end{aligned}
$$

$$
\begin{aligned}
& -y=-5 x-5 \\
& \frac{-14}{-1}=\frac{-3 x}{-1}-\frac{3}{-1} \\
& 1-2 x+2
\end{aligned}
$$

$$
y=3 x+3
$$

$$
(0,3) m=3
$$

In \#67-70, Solve each system using the substitution method. If there is No Solution, or Infinitely Many Solutions, so state.

$$
\begin{gathered}
\text { 67. } \begin{array}{l}
3 x+2 y=3 \\
y=2 x-16 \\
3 x+2(2 x-16)=3 \\
3 x+4 x-32=3 \\
7 x-32=3 \\
+32+32 \\
7 x=35 \\
x=35 \\
x=5
\end{array} \quad \therefore \quad(x, y)=(5,-6) \\
y=2(5)-16 \\
y=10-16 \\
y=-6
\end{gathered}
$$

69.

$$
\text { 9. } \begin{gathered}
3 x+y=-7 \quad y=-3 x-7 \\
x+2 y=-9 \\
x+2(-3 x-7)=-9 \\
x-6 x-14=-9 \\
-5 x=5 \\
x=-1 \\
-1+2 y=-9 \\
2 y=-8 \\
y=-4
\end{gathered}
$$

70. $\left\{\begin{array}{c}x+3 y=6 \\ y=-\frac{1}{3} x+2\end{array}\right.$

$$
\begin{aligned}
& x+3\left(-\frac{1}{3} x+2\right)=6 \\
& x+3 \cdot-\frac{1}{3} x+3 \cdot 2=6 \\
& 1 x+-1 x+6=6
\end{aligned}
$$

Infinitely many SOWTIONS
71. Given the sets $A=\{m, a, t, h\}, B=\{m, y, t, h\}, C=\{f, u, n\}$, find the following:

$$
\underset{\text { intersect }}{\text { b. } A \cap B=\{M, t, h\}}
$$

c. $A \cap C=\varnothing$ Empty Set
d. Fill in the Venn Diagram using A and B

72. We have information for the number of students at ARCC taking a college level math class, and the number of students at ARCC taking a science course. Use a Venn diagram to illustrate the number that are in each region. We know 850 students are taking a college level math class, 1100 students are taking a science course, and 625 students are taking both a college level math class and a science course.

$$
\begin{array}{r}
1100 \\
-625 \\
\hline 475
\end{array}
$$

a. The number of people taking a college level math class, but not a science course is

b. Suppose we want to mail scholarship information to all of the individuals who are taking a college level math course or taking a science course or both but we don't want anyone to receive two mailings. How many mailings do we need to send so that each person receives only one mailing?

$$
\begin{aligned}
& 1325 \text { mailings } \\
& 225+625+475 \rightarrow 13 \\
& \hline
\end{aligned}
$$

73. A class was polled on their favorite season of the year. Use the following table to finish the pie chart (title, percentages, label each portion)

Winter	Spring	Summer	Fall
4	3	12	6

$4+3+12+6$
title: Favorite Season
\qquad
$\%$ Winter: $\frac{4}{25} \cdot 4+\frac{16}{100}+16 \%$
\% spring: $\frac{3}{25 \cdot 4} \rightarrow \frac{12}{100}+1270$
\% Summer: $\frac{12 \cdot 4}{25 \cdot 4} \rightarrow \frac{48}{100} 48 \%$

\%rall: $\frac{6 \cdot 4}{25} \cdot 4 \rightarrow \frac{24}{100} \rightarrow 24 \%$
74. Twelve car salespersons were asked how many cars they sold in the last month. Here were their answers:

$$
3,3,4,6,6,6,8,8,10,11,12,24
$$

a. Find the range, mean, median of the number of cars sold

21 cars

Median

$$
\begin{aligned}
& \frac{6+8}{2} \rightarrow \frac{14}{2} \rightarrow 7 \\
& 7 \mathrm{curs}
\end{aligned}
$$

b. Give the 5 -number summary:

Min. value:
3

Median, $Q_{2}:{ }^{\top}$

mean

75. Eight students were asked to estimate their score on a 10-point quiz. Their estimated and actual scores are given in the table. Draw a scatter plot of the data, then use two convenient points to draw a line of best fit. Give the equation for your line. $y=m x+b$

Estimated \boldsymbol{X}	Actual \mathbf{Y}
4	6
7	7
7	2
8	7
7	9
9	10
10	9
2	4

I will use $(2,4)$ and $(7,7)$.
(1) Find m $m=\frac{7-4}{7-2}=\frac{3}{5}$
(2) Find b. $y=\frac{3}{5} x+b \quad y=\frac{3}{5} \cdot 2+b$

$$
\begin{aligned}
& \begin{array}{l}
4=\frac{3}{5} .2+b \\
4-6=6
\end{array} \quad y=\frac{14}{5} \quad y=\frac{3}{5} x+\frac{14}{5} \quad \begin{array}{l}
\text { Answers } \\
\text { May vat if } \\
\text { you vise } \\
\text { different points. }
\end{array}
\end{aligned}
$$

Estimated Grade

