Intermolecular Forces

1. Arrange the following in order of increasing boiling point. Explain your reasoning.
A) CH_{4}
B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
E) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
2. How much energy is released when 47.5 g of water freezes? $\left(\Delta H_{f u s}=6.02 \mathrm{~kJ} / \mathrm{mol}\right.$ for $\left.\mathrm{H}_{2} \mathrm{O}\right)$
3. Platinum crystallizes with the face centered cubic unit cell. The radius of a platinum atom is 139 pm . Calculate the edge length of the unit cell and the density of platinum in $\mathrm{g} / \mathrm{cm}^{3}$.
4. NaCl crystalizes in a face centerd cubic lattice of chloride ions, with the smaller sodium ions occupying holes between the chloride ions. How many Cl^{-}ions are in contact with any single Na^{+} ion?
a. 4
b. 6
c. 8
d. 12

Solutions

1. An aqueous NaCl solution is made using 133 g of NaCl diluted to a total solution volume of 1.00 L . Calculate the molarity, molality, and mass percent of the solution. (Assume the solution has a density of $1.08 \mathrm{~g} / \mathrm{mL}$.)
2. A solution contains 55.8 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in 455 g of water. What is the freezing point and boiling point of the solution?
For water: f.p. $=0.000^{\circ} \mathrm{C}$
$K_{f}=1.858^{\circ} \mathrm{C} / \mathrm{m}$
b.p. $=100.000^{\circ} \mathrm{C}$
$K_{b}=0.512^{\circ} \mathrm{C} / \mathrm{m}$

Kinetics

1. For the reaction given below, express the rate of reaction with respect to each of the reactants and products.
$2 \mathrm{~N}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})$
2. Given the following experimental data, find the rate law and the rate constant for the reaction:

$$
\mathrm{NO}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})
$$

Run	$[\mathrm{NO}]_{0}$	$\left[\mathrm{NO}_{2}\right]_{0}$	$\left[\mathrm{O}_{2}\right]_{0}$	Initial Rate $\left(\mathrm{M} \cdot \mathrm{s}^{-1}\right)$
1	0.10 M	0.10 M	0.10 M	2.1×10^{-2}
2	0.20 M	0.10 M	0.10 M	4.2×10^{-2}
3	0.20 M	0.30 M	0.10 M	1.26×10^{-1}
4	0.10 M	0.10 M	0.20 M	2.1×10^{-2}

What is the overall reaction order?
3. Indicate the order of reaction for each of the following observations.
a. A plot of the concentration of the reactant versus time which yields a straight line.
b. Reactions having a half-life that is independent of initial concentration.
c. A plot of the reciprocal of the concentration versus time yields a straight line.
4. Consider the following overall reaction which is experimentally observed to be second order in $A B$ and zero order in C.

$$
A B+C \rightarrow A+B C
$$

Determine whether the mechanism below is valid for this reaction

$$
\begin{aligned}
& \mathrm{AB}+\mathrm{AB} \xrightarrow{k_{1}} \mathrm{AB}+\mathrm{A} \\
& \mathrm{AB}+\mathrm{C} \xrightarrow{k_{2}} \mathrm{AB}+\mathrm{BC} \quad \text { (flow) }
\end{aligned}
$$

5. The rate law for the reaction $A+b \rightarrow C+D$ is first order in $[A]$ and second order in $[B]$. If $[A]$ is halved and $[B]$ is doubled, wthe rate of the reaction will
a. Remain the same.
b. Be increased by a factor of 2
c. Be increased by a factor of 4
d. Be increased by a factor of 8

Equilibrium

1. Consider the following exothermic reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{Cl}_{2}(g) \rightleftarrows \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(g)
$$

If you were a chemist trying to maximize the amount of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ produced, which of the following might you try? Assume that the reaction mixture reaches equilibrium.
A. Increasing the reaction volume
b. Removing $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ from the reaction mixture as it forms.
c. Lowering the reaction temperature
d. Adding Cl_{2}
2. The reversible reaction
$\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}(g)+$ heat
is carried out by mixing carbon monoxide and hydrogen gases in a closed vessel under high pressure with a suitable catalyst. After equilibrium established at high temperature and pressure, all three substances are present. If the pressure on the system is lowered, with the temperature held constant, what will be the result?
a. The amount of $\mathrm{CH}_{3} \mathrm{OH}$ will increase.
c. The amount of each substance will be unchanged
b. The amount of $\mathrm{CH}_{3} \mathrm{OH}$ will decrease.
d. The amount of each substance will increase.
3. Carbon monoxide gas reacts with hydrogen gas at elevated temperatures to form methanol according to this equation:

$$
\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}(g)+\text { heat }
$$

When 0.40 mol of CO and 0.30 mol of H_{2} are allowed to reach equilibrium in a 1.0 L container, 0.060 mol of $\mathrm{CH}_{3} \mathrm{OH}$ are formed. What is the value of K_{c} ?
a. 0.50
b. 0.98
c. 1.7
d. 5.4

Acid and Base Chemistry

1. Classify each acid as strong or weak. If the acid is weak, write an expression for the acid ionization constant (K_{a})
a. HF
b. HCl
c. $\mathrm{H}_{2} \mathrm{SO}_{4}$
d. $\mathrm{H}_{2} \mathrm{CO}_{3}$
2. Determine the percent of ionization of a 0.225 M solution of benzoic acid $\left(\mathrm{K}_{\mathrm{a}}=6.5 \times 10^{-5}\right)$?
3. Determine the pH of the following solutions:
a. 0.0195 M KOH
b. $0.318 \mathrm{M} \mathrm{KC}_{6} \mathrm{H}_{5} \mathrm{O}\left(\mathrm{K}_{\mathrm{a}}\right.$ phenol $\left.=1.3 \times 10^{-10}\right)$

Aqueous Ionic Equilibrium

1. Consider a titration of a 35.0 mL sample of 0.175 M HBr is titrated with 0.200 M KOH . Determine:
a. Initial pH
b. equivalence volume
c. pH when 10.0 mL 0.200 M KOH has been added
d. pH at the equivalence point
E. pH at 5.0 mL past the equivalence point
F. Draw a rough graph of what the titration curve expected.
2. If $Q_{s p}>K_{s p}$ is the solution saturated, unsaturated, or supersaturated?

Free Energy and Thermodynamics

1. Calculate $\Delta \mathrm{S}^{\circ}$ surr at the given temperature for a reaction with the following conditions:

$$
\Delta H_{r x n}^{o}=-287 \mathrm{~kJ} ; T=298 \mathrm{~K}
$$

2. Determine the value of $\Delta H_{r x n}^{o}, \Delta S_{r x n}^{o}$ and $\Delta \mathrm{G}_{r x n}^{0}$ at $25^{\circ} \mathrm{C}$ and the spontaneity. If nonspontaneous, is it possible that a change in temperature will make it spontaneous? If so, should the temperature be raised or lowered to accomplish spontaneity?
$3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$\Delta H_{f}^{\circ}(\mathrm{kJ} / \mathrm{mol}):$	$\mathrm{H}_{2}(\mathrm{~g}): 0$	$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}):-824.2$	$\mathrm{Fe}(\mathrm{s}): 0$,	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}):-241.8$
$\Delta S^{\circ}(\mathrm{J} / \mathrm{mol} \cdot \mathrm{K}):$	$\mathrm{H}_{2}(\mathrm{~g}): 130.7$	$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}): 87.4$	$\mathrm{Fe}(\mathrm{s}): 27.3$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}): 188.8$

3. Find the equilibrium constant for the following reaction at $25^{\circ} \mathrm{C}$:
$2 \mathrm{H}_{2} \mathrm{~S}(g) \leftrightarrows 2 \mathrm{H}_{2}(g)+\mathrm{S}_{2}(g)$
A. $\Delta G_{r x n}^{o}=-33.4 \mathrm{~kJ} / \mathrm{mol}$
b. $\Delta G_{r x n}^{o}=0.0 \mathrm{~kJ} / \mathrm{mol}$
c. $\Delta G_{r x n}^{0}=79.7 \mathrm{~kJ} / \mathrm{mol}$

Electrochemistry

1. Balance the following redox reaction in acidic solution:
$\mathrm{BrO}_{3}^{-}(a q)+\mathrm{N}_{2} \mathrm{H}_{4}(g) \rightarrow \mathrm{Br}^{-}(a q)+\mathrm{N}_{2}(g)$
2. Sketch the cell for the following reaction:

$$
\mathrm{Cr}(s)+\mathrm{Fe}^{3+}(a q) \rightarrow \mathrm{Fe}^{2+}(a q)+\mathrm{Cr}^{3+}(a q)
$$

3. Express the following reaction in cell notation:

$$
2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Pb}(\mathrm{~s}) \rightarrow 2 \mathrm{Ag}(\mathrm{~s})+\mathrm{Pb}^{2+}(\mathrm{aq})
$$

4. Balance the following reaction in basic solution:

$$
\mathrm{Al}(s)+\mathrm{MnO}_{4}^{-}(a q) \rightarrow \mathrm{MnO}_{2}(s)+\mathrm{Al}(\mathrm{OH})_{4^{-}}(a q)
$$

5. Calculate $E_{\text {cell }}^{O}$ for the following redox reaction and determine spontaneity.

$$
2 \mathrm{Cu}(s)+\mathrm{Mn}^{2+}(a q) \rightarrow 2 \mathrm{Cu}^{+}(a q)+\mathrm{Mn}(s)
$$

6. Which of the following metal cations is the best oxidizing agent? Why?

$$
\mathrm{Pb}^{2+}, \mathrm{Cr}^{3+}, \mathrm{Fe}^{2+}, \mathrm{Sn}^{2+}
$$

Nuclear Chemistry

1. One of the nuclides in spent nuclear fuel is $\mathrm{U}-235$, an alpha emitter with a half-life of 703 million years. How long would it take for the amount of U-235 to reach one-eighth of its initial mass? What is the order of this process?
2. Write a nuclear equation for the fusion of two $\mathrm{H}-2$ atoms to form $\mathrm{He}-3$ and one neutron.
3. If 1.0 g of matter were converted to energy, how much energy would be formed?

Answer Key:

Intermolecular forces

1. $\mathrm{A}<\mathrm{C}<\mathrm{B}<\mathrm{D}<\mathrm{E}$. Boiling point increases with increasing intermolecular forces. The molecules increase in their intermolecular forces as follows: A - dispersion forces; forces (broader electron cloud); C dispersion forces over a condensed area. B - stronger dispersion D - dispersion forces and dipoledipole interactions; E - dispersion forces, dipole-dipole interactions, and hydrogen bonding.
2. 15.9 kJ

$$
47.5 \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.016 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{6.02 \mathrm{~kJ}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=15.9 \mathrm{~kJ}
$$

3. $I=393 \mathrm{pm}, d=21.3 \mathrm{~g} / \mathrm{cm}^{3}$

$$
\begin{aligned}
& l=2 \sqrt{2} * r=139 \times 10^{-12} * 2 \sqrt{2}=393 \mathrm{pm} \\
& V=l^{3}=\left(\frac{393 * 10^{-12}}{10^{-2}}\right)^{3}=6.0698 * 10^{-23} \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{gathered}
\text { mass of unit cell }=\frac{195.08 \mathrm{~g}}{6.022^{*} 10^{23} \text { atoms }}=\frac{3.239 * 10^{-22} \mathrm{~g}}{\text { atom }} \times \frac{4 \text { atoms }}{1 \text { cell }}=1.296 * 10^{-21} \mathrm{~g} \\
\text { Density }=\frac{\text { mass }}{\text { Volume }}=\frac{1.296 * 10^{-21}}{6.0698^{*} 10^{-23}}=23.3 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}
\end{gathered}
$$

4. b.

Solutions

1. moles $\mathrm{NaCl}=133 \mathrm{~g} \mathrm{NaCl} / 58.44 \mathrm{~g} / \mathrm{mol}=2.28 \mathrm{~mol}$

$$
\begin{aligned}
& \mathrm{M}=\mathrm{mol} / \mathrm{L} 2.28 \mathrm{~mol} / 1 \mathrm{~L}=2.28 \mathrm{M}, \\
& m=\mathrm{mol} \text { solute } / \mathrm{kg} \text { solvent }=2.28 /(1.080 \mathrm{~kg}-.133 \mathrm{~kg})=2.41 \mathrm{~m}, \\
& \% \text { mass }=\mathrm{g} \text { solute } / \text { grams solution } * 100 \%=.133 / 1.08 * 100 \%=12.3 \% \text { by mass }
\end{aligned}
$$

2. molar mass $=55.8 / 180.156 \mathrm{~g} / \mathrm{mol}=0.3097$

$$
\begin{aligned}
& 0.3097 / 0.455=0.6807 \text { molal } \\
& \Delta \mathrm{T}=m \times K_{f}=.6807 * 1.86 \\
& \Delta \mathrm{~T}=m \times K_{b}=.6807 * 0.512 \\
& \text { f.p. }=-1.27^{\circ} \mathrm{C} \text {, b.p. }=100.349^{\circ} \mathrm{C}
\end{aligned}
$$

Kinetics

1. $2 \mathrm{~N}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})$

Rate $=-\frac{1}{2} \frac{\Delta\left[\mathrm{~N}_{2}\right]}{\Delta t}=-\frac{1}{5} \frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}=+\frac{1}{2} \frac{\Delta\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\Delta t}$
2. Rate $=k[\mathrm{NO}]\left[\mathrm{NO}_{2}\right]$

$$
\begin{aligned}
& \frac{\text { Rate }}{[\mathrm{NO}]\left[\mathrm{NO}_{2}\right]}=\mathrm{k}=2.1 \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-1} \\
& 2^{\text {nd }} \text { order reaction. }
\end{aligned}
$$

3. a. zero order
b. first order
c. second order
4. Yes it's valid
5. b.

Equilibrium

1. B, C, d.
2. b.
3. $0.060 /\left(0.4^{*} 0.3^{2}\right)=1.66666 \sim 1.7 \mathrm{C}$.

Acid and Base Chemistry

1. Classify each acid as strong or weak. If the acid is weak, write an expression for the acid ionization constant $\left(K_{a}\right)$. If K_{a} is available, it is a weak acid.
a. HF: weak acid
$\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H3O}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}$
b. HCl : strong acid
c. $\mathrm{H}_{2} \mathrm{SO}_{4}$: strong acid
d. $\mathrm{H}_{2} \mathrm{CO}_{3}$:
$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{a}}=\frac{[\mathrm{H} 3 \mathrm{O}+]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}$
2. Find the \% ionization of a 0.225 M benzoic acid solution.

$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}{ }^{-}$
I	0.225 M	0	0
C	$-x$	$+x$	$+x$
E	$0.225-x$	X	X

$\mathrm{K}_{\mathrm{a}}=\frac{[\mathrm{H} 3 \mathrm{O}+][\mathrm{HSO} 3-]}{[\mathrm{H} 2 \mathrm{SO} 3]}=\frac{\left[\mathrm{x}^{\wedge} 2\right]}{[0.225-\mathrm{x}]}=6.5 \times 10^{-5}$
Assume x is small. $x=.00382$
Get percent ionization.
$\%$ ionization $=\frac{\text { concentration of ionized acid }}{\text { initial concentration of acid }} \times 100 \%=\frac{0.00383}{0.225} \times 100 \%=1.70 \%$
3. a. $\mathrm{pH}=-\log \left(\mathrm{H}_{3} \mathrm{O}^{+}\right)=-\log (0.0195)=12.29$
b. Get $K_{\mathrm{b}}=\frac{K_{w}}{K_{a}}=\frac{1 \times 10^{-14}}{1.3 \times 10^{-10}}=7.7 \times 10^{-5}$. Ice table to get $\mathrm{x}=4.95 \times 10^{-3} . \mathrm{pOH}=-\log (\mathrm{x})=2.31$, $\mathrm{pH}=14-\mathrm{pOH}=14-2.31=11.69$

Aqueous Ionic Equilibrium

1. a. HBr is a strong acid, disassociates completely. $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

$$
\mathrm{pH}=-\log 0.175=0.757
$$

b. Volume for equivalence:
$35.0 \mathrm{~mL} \mathrm{HBr} \gg 0.035 \mathrm{~L}$ and $.175 \mathrm{M} \mathrm{HBr}^{*} .0350 \mathrm{~L}=0.006125 \mathrm{~mol} \mathrm{HBr}$
Need mol acid to = mol base
$0.006125 \mathrm{~mol} \mathrm{KOH} / 0.2 \mathrm{M} \mathrm{KOH}=0.030625 \mathrm{~L} \mathrm{KOH} * 1000=30.6 \mathrm{~mL}$
c. pH after 10 mL base added:
get moles base: $0.01 \mathrm{~L}^{*} .2=.0002 \mathrm{~mol} \mathrm{KOH}$
$0.006125 \mathrm{~mol} \mathrm{HBr}-.0002 \mathrm{~mol} \mathrm{KOH}=0.004125 \mathrm{~mol} \mathrm{HBr}$ left

Need new molarity. 0.004125 / . $045 \mathrm{~L}=.0916667 \mathrm{M}$
$\mathrm{H} \& \mathrm{H}$ equation: $\mathrm{pH}=\log \frac{[\text { base added }]}{[\text { remaining acid }]}$
$\mathrm{pH}=-\log .0916667=1.038$
d. pH @ equivalence point:
since strong acid/base titration $\mathrm{pH}=7$
E. $\quad \mathrm{pH} 5 \mathrm{~mL}$ past equivalence point:
all of the acid has been made into water by the base.
$.2 \mathrm{M}^{*} 0.005 \mathrm{~L}=0.0010$ moles base.
Molarity $=.00010$ moles $/ .0706 \mathrm{~L}=.14164 \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=1 * 10^{-14} / .14164=8.69565 * 10^{-14}$
$\mathrm{pH}=-\log \left(8.69565 * 10^{-14}\right)=13.06$
F. pH vs. volume graph will be nearly linear and then have a sharp upward slope near equivalence volume. Equivalence $\mathrm{pH}=7$. The graph will start low at a low pH and end at a high pH .
2. The solution is supersaturated. Solid will begin to precipitate out of solution when $Q>K_{\text {sp }}$ or a seed crystal could cause a precipitate to form if the supersaturated solution was heated to allow increased solubility.

Free Energy and Thermodynamics

Spontaneity:

$\Delta \mathrm{H}$	$\Delta \mathrm{S}$	High Temp	Low Temp
-	+	spontaneous	Spontaneous
+	-	nonspontaneous	nonspontaneous
-	-	nonspontaneous	Spontaneous
+	+	spontaneous	nonspontaneous

Mathematically:

$$
\Delta G_{f}^{o}=\Delta H_{f}^{o}-\mathrm{T} \Delta S_{f}^{o}
$$

If $\Delta \mathrm{H}$ is negative and you are subtracting a positive number, the result must be negative (spontaneous).
If $\Delta \mathrm{H}$ is positive and you are subtracting a negative number (+\#--\#), the result must be positive (nonspontaneous).

1. $\Delta S_{\text {surr }}^{o}=\frac{-\Delta \mathrm{H}_{\text {sys }}^{0}}{\mathrm{~T}}=>\Delta S_{\text {surr }}^{o}=-\frac{-287000}{298}=963 \frac{\mathrm{~J}}{\mathrm{~K}}$
2. $\Delta H_{r x n}^{o}=\sum n_{p} \times \Delta H_{f}^{o}$ (products) $-\sum n_{r} \times \Delta H_{f}^{o}$ (reactants)
$\Delta H_{r x n}^{o}=+98.8 \mathrm{~kJ}$
$\Delta S_{r x n}^{o}=\sum n_{p} \times \Delta S_{f}^{o}($ products $)-\sum n_{r} \times \Delta S_{f}^{o}$ (reactants)
$\Delta S_{r x n}^{o}=+141.5 \mathrm{~J} / \mathrm{K} \quad \mathrm{T}=25^{\circ} \mathrm{C}+273.15=298 \mathrm{~K}$
$\Delta G^{o}=\Delta H_{r x n}^{o}-\mathrm{T} \Delta S_{r x n}^{o} \quad \Delta G^{o}=98800 \mathrm{~J}-(298 \mathrm{~K})\left(141.5 \frac{\mathrm{~J}}{\mathrm{~K}}\right)=+56.6 \mathrm{~kJ}$. Reaction is non-spontaneous.
The reaction can be made spontaneous by increasing the temperature.
$\Delta G_{r x n}^{o}=\sum n_{p} \times \Delta G_{f}^{o}($ products $)-\sum n_{r} \times \Delta G_{f}^{o}($ reactants $)$
$\Delta G_{r x n}^{o}=[2(0.0)+1(79.7)]-[2(-33.4)]=+146.5 \mathrm{~kJ}$
3. $\Delta G_{r x n}^{o}=-R T \ln K$
a. $K_{e q}=e^{\frac{-\Delta G_{x r n}^{o}}{R T}}=e^{-\frac{-33400 \mathrm{~J}}{\left(8.314 \frac{l}{\mathrm{~K} \cdot \mathrm{~mol})}(298 K)\right.}}=7.16 \times 10^{5}$
b. $K_{e q}=e^{\frac{-\Delta G_{r x n}^{o}}{R T}}=e^{-\frac{0 \mathrm{~J}}{\left(8.314 \frac{J}{\left.K^{\text {moo }}\right)}\right)^{(298 K)}}}=1$
c. $K_{e q}=e^{\frac{-\Delta G_{r x n}^{o}}{R T}}=e^{-\frac{79700 \mathrm{~J}}{\left(8.314 \frac{J}{K \cdot m o l}\right)(298 K)}}=1.07 \times 10^{-14}$

Electrochemistry

1. $\mathrm{BrO}_{3}^{-}(\mathrm{aq})+\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightarrow \mathrm{Br}^{-}(\mathrm{aq})+\mathrm{N}_{2}(\mathrm{~g})$
$1 / 2$ RXNS:
$\mathrm{BrO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{Br}^{-}(\mathrm{aq})$
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})$

Balance O's, Add $\mathrm{H}_{2} \mathrm{O}$:

$$
\mathrm{BrO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{Br}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Balance $\mathrm{H} \mathbf{w} / \mathrm{H}^{+}$:

$$
\begin{aligned}
& 6 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{BrO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{Br}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})
\end{aligned}
$$

Add electrons:

$$
\begin{aligned}
& 6 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{BrO}_{3}^{-}(\mathrm{aq})+6 \mathrm{e}^{-} \rightarrow \mathrm{Br}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-}
\end{aligned}
$$

Equalize electrons:

$$
12 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{BrO}_{3}^{-}(\mathrm{aq})+12 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
3 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightarrow 3 \mathrm{~N}_{2}(\mathrm{~g})+12 \mathrm{H}^{+}(\mathrm{aq})+12 \mathrm{e}^{-}
$$

Add $1 / 2$ rxns:

$$
3 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{~g})+12 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{BrO}_{3}^{-}(\mathrm{aq})+12 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+3 \mathrm{~N}_{2}(\mathrm{~g})+12 \mathrm{H}^{+}(\mathrm{aq})+12 \mathrm{e}^{-}
$$

Cancel stuff ($12 \mathrm{H}^{+}, 12 \mathrm{e}^{-}$leaves):

$$
3 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{~g})+2 \mathrm{BrO}_{3}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

2.

3. $2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Pb}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Pb}^{2+}(\mathrm{aq})$ in cell notation:
$\mathrm{Pb}(s)\left|\mathrm{Pb}^{2+}(a q)\right|\left|\mathrm{Ag}^{+}(a q)\right| \mathrm{Ag}(s)$
4. $\mathrm{Al}(s)+\mathrm{MnO}_{4}^{-}(a q) \rightarrow \mathrm{MnO}_{2}(s)+\mathrm{Al}(\mathrm{OH})_{4}^{-}(a q)$

Two $1 / 2$ RXNS: $\quad \mathrm{MnO}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{MnO}_{2}(\mathrm{~s}) \underline{\text { AND Al(s) } \rightarrow \mathrm{Al}(\mathrm{OH})_{4}^{-}(\mathrm{aq})}$
Balance Everything but \mathbf{O} and H :
already done
Balance O by adding $\mathrm{H}_{2} \mathrm{O}$:

$$
\begin{aligned}
& \mathrm{MnO}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{MnO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& \mathrm{Al}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{Al}(\mathrm{OH})_{4}^{-}(\mathrm{aq})
\end{aligned}
$$

Balance $\mathrm{H} \mathbf{w} / \mathrm{H}^{+}$:

$$
4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{MnO}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{MnO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\mathrm{Al}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{Al}(\mathrm{OH})_{4}^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})
$$

Neutralize H^{+}with OH^{-}, adding the same number of OH - to each side of the equations:

$$
\begin{aligned}
& 4 \mathrm{OH}^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{MnO}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{MnO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+4 \mathrm{OH}^{-}(\mathrm{aq}) \\
& 4 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{Al}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{Al}(\mathrm{OH})_{4}^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

Cancel waters:

$$
\begin{aligned}
& 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{MnO}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{OH}^{-}(\mathrm{aq}) \\
& 4 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{Al}(\mathrm{~s}) \rightarrow \mathrm{Al}(\mathrm{OH})_{4}^{-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

Equalize charge by adding electrons:

$$
3 \mathrm{e}^{-}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{MnO}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{OH}^{-}(\mathrm{aq})
$$

$4 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{Al}(\mathrm{s}) \rightarrow \mathrm{Al}^{-}(\mathrm{OH})_{4}^{-}(\mathrm{aq})+3 \mathrm{e}^{-}$
Add $1 / 2$ rxns:
$3 \mathrm{e}^{-}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{MnO}_{4}^{-}(\mathrm{aq})+4 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{Al}(\mathrm{s}) \rightarrow \mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{Al}(\mathrm{OH})_{4}^{-}(\mathrm{aq})+3 \mathrm{e}^{-}$
Cancel stuff ($4 \mathrm{OH}^{-}$and $3 \mathrm{e}^{-}$leaves):
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{MnO}_{4}^{-}(\mathrm{aq})+\mathrm{Al}(\mathrm{s}) \rightarrow \mathrm{MnO}_{2}(\mathrm{~s})+\mathrm{Al}(\mathrm{OH})_{4}^{-}(\mathrm{aq})$
5. $\quad \mathrm{E}^{\circ}{ }_{\text {cell }}$ and spontaneity for:
$2 \mathrm{Cu}(s)+\mathrm{Mn}^{2+}(a q) \rightarrow 2 \mathrm{Cu}^{+}(a q)+\mathrm{Mn}(s)$
$21 / 2$ rxns w/electrons:
$2 \mathrm{Cu}(s)+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cu}^{+}(a q)$
$\mathrm{Mn}^{2+}(a q) \rightarrow \mathrm{Mn}(s)+2 \mathrm{e}^{-}$
Look up potentials:
Mn reduced, E° red $=-1.18 \mathrm{~V}$
Cu oxidized, $\mathrm{E}^{\circ}{ }_{\text {ox }}=-\mathrm{E}^{\circ}{ }_{\text {red }}=-0.52 \mathrm{~V}$
$\mathrm{E}^{\circ}{ }_{\text {cell }}=\mathrm{E}^{\circ}{ }_{\text {ox }}+\mathrm{E}^{\mathrm{o}}{ }_{\text {red }}=-1.70 \mathrm{~V}$
Negative E° cell, nonspontaneous.
6. Pb^{2+} is the strongest oxidizing agent because it has the highest E° (most positive in the table).

Relevant equation:
$\Delta G=-n F E_{\text {cell }}^{o} \mathrm{~F}=96,485 \mathrm{C} / \mathrm{mol} \mathrm{e}^{-}$

Nuclear Chemistry

1. $2.11 \times 10^{9} \mathrm{yr}, 1^{\text {st }}$ order.
2. ${ }_{1}^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} n$
3. $E=m c^{2}, c=2.998 * 10^{8}$
$1 / 1000 *\left(2.998 * 10^{8}\right)^{2}=8.988 * 10^{13} \mathrm{~J}=9.0 \times 10^{13} \mathrm{~J}$
